

LFS Implementation
Document

Header file

● Functions
– lfs_write: writes the given data by appending to the EOF.

– read_record: reads the Metadata file to obtain the dict.

– compare_tup: compares two given tuples to find common area.

– lfs_find_chunks: recursive function that finds the chunks to read.

– lfs_read: performs the read.

● Structs
– Tup: a tuple to address the areas we have written.

– lfs_record_on_disk: data structure for writing to Metadata file.

– lfs_record: our log which works like a mapping dict.

Write Function

● void lfs_write(size_t addr, char * data)
– Write the given data at the end of the data file.

– Write the given addr and the size of data in the
metadata file.

Metadata file

Data file

a
0

a
0 a

1
a

2

Read Function

● size_t lfs_read(size_t addr, size_t size, char * res)

– Call read_record() function to get updated log list.

– Call lfs_find_chunks() for the records and given
query(addr, addr + size) so it will return back list of exact
chunks that should be read to get the data correctly.

– Read the given chunks and put them in the given
res array.

Recursive find_chunks Function

● lfs_find_chunks(size_t a, size_t b, int index, lfs_record* my_recs, vector<>& chunks_stack)

● a, b ==> start & end of the query

● Index ==> index of the item in the log_list

● my_recs ==> pointer to log_list

● chunks_stack ==> contains the found parts
 of latest data for given query Read

write

write

write

write

write

write

write

T
im

e

R
e

c
u

rs
iv

e
 F

lo
w

Put B area in the found stack;
Recall yourself for ares A and C;

A

B

C

Address Area

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

